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• Benefits from Optical Amplification

• Erbium-Doped Fiber Amplification (EDFA) Basics

• Raman Amplification Basics

• Optical Amplification, Optical Noise and Fiber 
Nonlinearities
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Benefits from Optical Amplification
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• Bit rate and protocol agnostic:

– Can amplify direct or coherent detection signals

– Can amplify amplitude and/or phase modulated signals

– Can amplify any bit rate

• Reliable:

– No high-speed electronics

– Initially used in high-capacity submarine applications

• Single- and multi-channel operation

• High service velocity when new channels are added

• Cost effective:

– A single amplifier can amplify virtually any channel count (the cost does not 

scale up linearly with the number of optical wavelengths transported in the 

fiber)

– Low capital and operational expenditures

Benefits from Optical Amplification
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Erbium-Doped Fiber Amplification 
(EDFA) Basics
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• Semiconductor pump sources @ 980 and/or 1480 nm

– Typically 3 pumps are used in high-performance EDFAs

• Optical isolators: protection against external reflections

• WDM: multiplexing into the doped fiber the signal and pump waves

 Optical amplification is confined to the erbium doped

fiber coil (a few tens of meters).
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• 1964: C. Koester and E. Snitzer

– 1 meter long neodymium-doped fibre

– 10 µm core, 1 mm cladding

– Pulsed signal at 1.06 µm

– Optical pumping via flash tube

• 1986: New research work with fiber amplifier at 1.55 µm

• 1989: First transmission system experiments with erbium-doped fiber 
amplifiers

• 1993: EDFA deployment in the field in submarine and terrestrial systems

• 1996:

– 5 Gbit/s fiber cable over 9,000 km (Japan-USA cable)

– Amplification of multiple wavelengths simultaneously

Brief EDFA History
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• What happens to excited erbium ions ?

– Non-radiative de-excitation: no "optical" impact

– Radiative de-excitation:

• Spontaneous emission Stimulated emission
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• EDFA gain level and profile governed by the pump power:

 Below a given pumping threshold, the EDFA is opaque.

• The intrinsic EDFA gain profile is not uniform across conventional band
(C band: 1530-1560 nm):

 Additional gain flattening filters are mandatory (not power efficient as the

extra optical gain is shaved off, not redistributed in other spectral regions).
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Raman Amplification Basics
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• Semiconductor pump sources around 1450 nm for optical gain
around 1550 nm

• Optical isolators: protection against external reflections

• WDM: launching into the transmission fiber the pump wave
(Backward mode in the example above)

 Raman amplification occurs inside the transmission fiber along the

several tens of kilometers' preceding the Raman amplifier.
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• 1928: Basic scattering effect discovered by
Chandrasekhar Venkata Raman
(First Asian Scientist to be awarded the Nobel Prize in 1930) 

• 1972: R.H. Stolen and E.P. Ippen

– Raman gain measured in optical fiber

• 1985: Optical transmission (with Soliton propagation)
demonstrated by Linn Mollenauer using Raman amplifiers

• Beginning of 90's: In competition with EDFA for first practical 
applications (EDFA won)

• End of 90's: The return of Raman amplification driven by:

– Higher [Capacity x Distance] metric required

– Availability of reliable high-power pump sources

– Opening of new optical bandwidth

Brief Raman Amplifier History
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• The excited molecule will immediately relax its energy state emitting a 
photon:

– The most probable outcome 

is that the state to which

the molecule returns 

is the same as that from

which it started, in which

case the emitted photon is

Rayleigh scattering.
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• The excited molecule will immediately relax its energy state emitting a 
photon:

– The next most probable outcome is that the molecule returns to a higher 

vibrational energy state.

• The resulting scattered light must, by conservation of energy, be of a lower energy 

(i.e. lower frequency or longer wavelength) than the incident light (hs < hi).

• This is Stokes scattering resulting in Raman effect.

• Raman scattering is an inelastic process in which part of the power is lost from 

an optical pump wave 

and absorbed by the

transmission medium 

as phonons (vibrational

energy). The remaining

energy is then re-emitted

as a wave of lower

frequency.
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• Signal amplification occurs when an optical signal is transmitted with a 
frequency which falls within the Raman scattering spectrum of the pump 
source:

– The signal triggers stimulated emission at the signal wavelength, which is in 

phase with, and propagates in the same direction as, the original signal 

photons, and so leads to Raman gain.
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• Amplification of any optical signal by pumping at an optical frequency 
13.2 THz (: silica phonon energy) higher than the frequency of the 
desired signal:

– If unpumped, Raman amplifier does not go opaque.

– Raman gain bandwidth of about 2 THz
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• Amplification of any optical signal by pumping at an optical wavelength 
100 nm less than the wavelength of the desired signal in the 1550 nm 
area:

– Raman gain bandwidth of about 15 nm

– Can be broadened and flattened by multi-wavelength pumping

Raman Gain Characteristics
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Raman Amplifier Gain Spectrum
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Raman Amplifier Gain Spectrum
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Optical Amplification, Optical Noise 
and Fiber Nonlinearities
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Optical gain experienced by the signal

• Optical amplification is achieved at the expense of optical noise generation.

• Raman amplifiers also generate optical noise but in a lower amount.
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• Single wavelength
amplified by an
old-generation EDFA
(unflatenned)

• The Amplified
Spontaneous
Emission (ASE) is
a wideband, non-coherent,
un-polarized light which will be
detected as noise by the receive interface.

• Optical Signal-to-Noise Ratio (OSNR, in dB / 0.1 nm) – ratio between the 
signal power and the ASE noise power in a given optical bandwidth – is 
an important parameter for engineering optical links as any combination 
of modulation format and receiver technology imposes a minimal OSNR 
figure for properly detecting the data.

Generation of Optical Noise From
An Erbium-Doped Fiber
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• Multiple wavelengths at the input and output of a Raman amplifiers 
string

• At the receive end the link, the system optimization parameter was the 
uniformization of the OSNR characteristic for all the wavelengths. 

Generation of Optical Noise From
A Raman Amplifiers String
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• Longer transmission distances and longer spans decrease the
Optical Signal-to-Noise Ratio (OSNR) figure at the output end.

Optical Noise Accumulation

Optical noise

Optical noise

Optical noise
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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• Eye diagram: oscilloscope display in which a digital data signal from a 
receiver is repetitively sampled and applied to the vertical input, while 
the data rate (clock signal) is used to trigger the horizontal sweep.

Digital Pulse Patterns
And Eye Diagrams (For NRZ Signals)

0 100 200

Time (ps)

A
m

p
lit

u
d
e
 (

a
.u

.)

Tbit

300

0 200 800 1200 1600 2000

Time (ps)

A
m

p
lit

u
d
e
 (

a
.u

.)

Tbit

Synchronization by
the 10-Gbit/s data frame:
 Pulse pattern

Synchronization by
the 10-Gbit/s clock signal:
 Eye diagram

Eye

opening



© 2015 OpticalCloudInfra Proprietary 27

Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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• Options to overcome the long span:

– Build an intermediate site?

Issues with

1. CapEx

2. OpEx

3. Permitting

4. Lead time

– Terminate the long span at either end with back-to-back terminals?

Issues with

1. CapEx

2. OpEx

3. Incremental cost when new capacity is added

– Create optical gain within the line fiber to avoid nonlinear/OSNR limitations 

and extend span performance

Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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Optical Signal-to-Noise Ratio (OSNR)
And Per Channel Power Management
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 Raman amplification helps to get closer to the ideal zero-loss case.

Combination of Raman Optical 
Amplification and Low-Loss Fiber

Signal power profile in long-span transmission

Non-linear limitation
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The Optical Infrastructure Enabling
Worldwide Web and Cloud


