

OPTICAL DESIGNS FOR GREATER POWER EFFICIENCY

A. Pilipetskii, D. Foursa, M. Bolshtyansky, G. Mohs, and N. S. Bergano

Presenter:Alexei PilipetskiiCompany:TE Connectivity SubCom

Emerging Subsea Networks

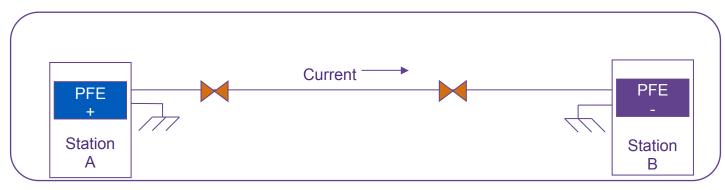
Dubai

18th-21st April 2016

Presenter Profile

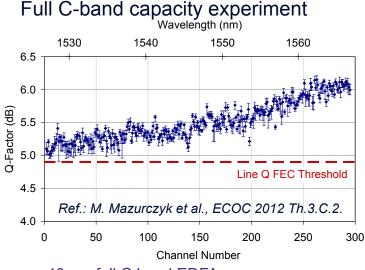
Alexei Pilipetskii is the Senior Director of System Research at TE SubCom. Alexei joined TE SubCom in 1997. Alexei has been involved in transmission research with a focus on next generation transmission technologies.

- Name: Alexei Pilipetskii
- Title: Senior Director System Research
- Email: apilipetskii@subcom.com



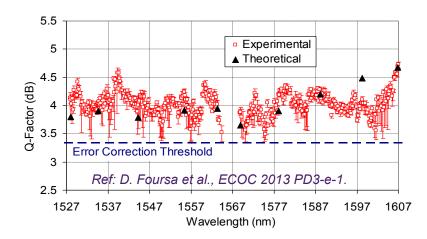
- 1. Motivation
- 2. Capacity demonstrations in a single mode fiber
- 3. System design and optical power optimization
- 4. SDM and power efficiency
- 5. Conclusions

- Undersea system powering
 - Power is supplied from the shore ends
 - Constant current power supply
 - Power available to the optical amplifiers is limited by maximum voltage drop on a cable



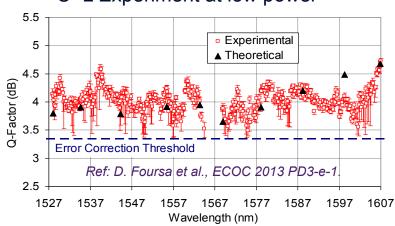
Typical Example

- Full C-Band EDFA system
 - Single-end feed ~ 15 kV
 - Output optical amplifier power up to 19dBm
 - Up to ~10 amplifier pairs (fiber pairs)
 - ~60 km repeater spacing
 - ~10 Mm transmission distances
 - More efficient power supplies help to alleviate powering problem
- What can be done from the optical standpoint?

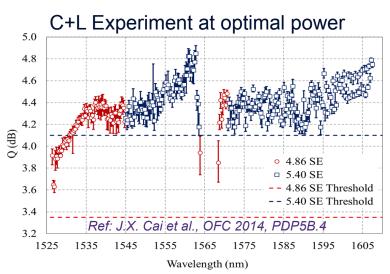


Capacity Demonstrations and Optical Power

- •40 nm full C band EDFA
- •19.5 dBm EDFA output power
- •152 μm^2 effective area fiber
- 55 km amplifier spacing
- •30.58 Tb/s over 6,630 km, 610% SE


C+L capacity experiment

- •C+L band EDFA
- •20.0 dBm EDFA output power
- •152 μ m² effective area fiber
- 55 km amplifier spacing
- •44.1 Tb/s over 9,100 km, 493% SE


C+L Transmission Experiments at Low and Optimal Power Levels

C+L Experiment at low power

- •20 dBm EDFA output power
- •152 μm^2 effective area fiber
- 55 km amplifier spacing

•44.1 Tb/s over 9,100 km, 493% SE

•22.5 dBm EDFA output power

- •152 μm^2 effective area fiber
- 55 km amplifier spacing
- •49.3 Tb/s over 9,100 km, 486 and 540 % SE

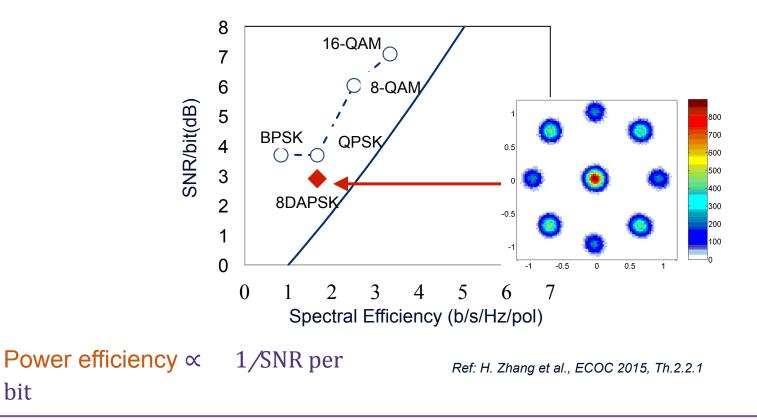
Bandwidth increase results in a larger capacity per similar amplifier output power

Increase power to optimal does not result in a proportional capacity increase

What else can be done?

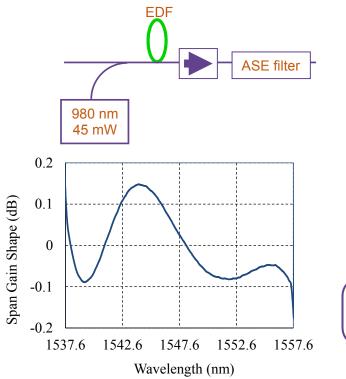
Modulation formats

• Amplifier bandwidth


• Repeater spacing

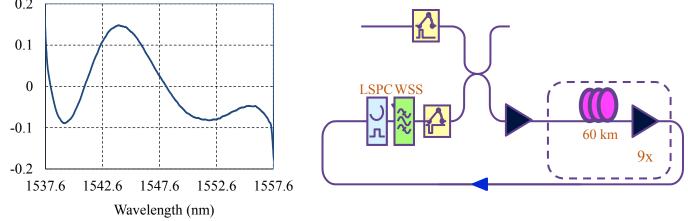
Space division multiplexing

Power Efficient Modulation Schemes



SubOptic

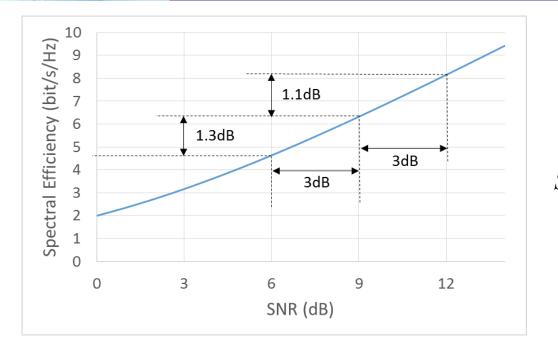
Dubai



Power Efficient Transmission Experiment

Dubai

- Narrow BW single-stage EDFAs
 - No gain equalization in EDFA
- 45 mW pump power
- 8.12 Tb/s capacity over 9,750 km

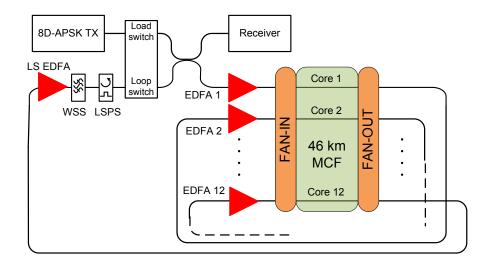


Power Efficiency and Repater Spacing

Power Efficiency Metric

1000 1.6 b/s/Hz/Pol *PE*=Capacity ×Distance \sum EDFA output power -3 b/s/Hz/Pol Output Power efficiency PE (Pb/s×km/W) 100 Shorter spans (~10 dB loss) are optimal H.Zhang et. al. ECOC 2015.Th.2.2 - Theoretical assumptions: Ideal 3 dB amplifier NF Modulation formats are at Shannon ٠ 10 capacity 50 100 150 0 Span Length (km)

Space Divison Multplexing Can Help



$$SE = 2\log_2(1 + SNR)$$

- SDM can provide higher capacity for the same power
- Additional benefit can come from lower nonlinear penalties

Transmission Experiment in MCF

Ref: A. Turukhin, et. al., OFC16 Th4C.1

- 46km 12 core MCF spans
- 14,350km transmission
- 82X106.8 Gb/s per core
- 105.1 Tb/s capacity
- Total Pump Power = 800mW

Optimization of optical power efficiency can result in a significant capacity increase

• SDM might be a promising path towards increase in capacity in power efficient manner

• Optimization studies need to be done to come up with the future solutions

Emerging Subsea Networks

